-4/9+x^4-37/9x^2=0

Simple and best practice solution for -4/9+x^4-37/9x^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/9+x^4-37/9x^2=0 equation:


x in (-oo:+oo)

x^4-((37/9)*x^2)-4/9 = 0

x^4+(-37/9)*x^2-4/9 = 0

x^4-37/9*x^2-4/9 = 0

t_1 = x^2

1*t_1^2-37/9*t_1^1-4/9 = 0

t_1^2-37/9*t_1-4/9 = 0

DELTA = (-37/9)^2-(-4/9*1*4)

DELTA = 1513/81

DELTA > 0

t_1 = ((1513/81)^(1/2)+37/9)/(1*2) or t_1 = (37/9-(1513/81)^(1/2))/(1*2)

t_1 = ((1513/81)^(1/2)+37/9)/2 or t_1 = (37/9-(1513/81)^(1/2))/2

t_1 = (37/9-(1513/81)^(1/2))/2

x^2-((37/9-(1513/81)^(1/2))/2) = 0

1*x^2 = (37/9-(1513/81)^(1/2))/2 // : 1

x^2 = (37/9-(1513/81)^(1/2))/2

t_1 = ((1513/81)^(1/2)+37/9)/2

x^2-(((1513/81)^(1/2)+37/9)/2) = 0

1*x^2 = ((1513/81)^(1/2)+37/9)/2 // : 1

x^2 = ((1513/81)^(1/2)+37/9)/2

x^2 = ((1513/81)^(1/2)+37/9)/2 // ^ 1/2

abs(x) = (((1513/81)^(1/2)+37/9)^(1/2))/(2^(1/2))

x = (((1513/81)^(1/2)+37/9)^(1/2))/(2^(1/2)) or x = -((((1513/81)^(1/2)+37/9)^(1/2))/(2^(1/2)))

x in { (((1513/81)^(1/2)+37/9)^(1/2))/(2^(1/2)), -((((1513/81)^(1/2)+37/9)^(1/2))/(2^(1/2))) }

See similar equations:

| -4/9+x^4-37/9x^2 | | 8x-1=-9 | | 14y+y= | | 3(x+6)=21+9x | | 5x^2-17x+60=0 | | 4n^2-8n+8=0 | | 7/12-y=-2/3 | | 32-3/8y+3/4y+5 | | 9+-18x+-1x^2+2x^3=0 | | X(6x+13)=0 | | 2x+4-48=1 | | -4+9x^4-37x^2=0 | | 3-4ln(2x)=1 | | 9(a+1)=46.8 | | -0.1=7c-5 | | 3e-7=0.8 | | 8p=18.4 | | 7(a+9)=126 | | 33=8c-7 | | 3a+3b=-21 | | 2a-4b=4 | | 2x+18=2x+3 | | x-(-5)=6 | | x+(-9)=7 | | 4.6=3c-5 | | 7e-9=11.3 | | 8p=12 | | x^4-x^3-x^2-2x=0 | | 6x^4+5x^3+25x^2+20x+4=0 | | 4xy-y^2+4x-y=0 | | 8x-ly=2t+4o | | 7-14*-12-8/-4=-35 |

Equations solver categories